Tag Archives: Transport Layer Security

AWS Certificate Manager will discontinue WHOIS lookup for email-validated certificates

Post Syndicated from Lerna Ekmekcioglu original https://aws.amazon.com/blogs/security/aws-certificate-manager-will-discontinue-whois-lookup-for-email-validated-certificates/

AWS Certificate Manager (ACM) is a managed service that you can use to provision, manage, and deploy public and private TLS certificates for use with Amazon Web Services (AWS) and your internal connected resources. Today, we’re announcing that ACM will be discontinuing the use of WHOIS lookup for validating domain ownership when you request email-validated TLS certificates.

WHOIS lookup is commonly used to query registration information for a given domain name. This information includes details such as when the domain was originally registered, and contact information for the domain owner and the technical and administrative contacts. Domain owners create and maintain domain registration information outside of ACM in WHOIS, which is a publicly available directory that contains information about domains sponsored by domain registrars and registries. You can use WHOIS lookup to view information about domains that are registered with Amazon Route 53.

Starting June 2024, ACM will no longer send domain validation emails by using WHOIS lookup for new email-validated certificates that you request. Starting October 2024, ACM will no longer send domain validation emails to mailboxes associated with WHOIS lookup for renewal of existing email-validated certificates. ACM will continue to send validation emails to the five common system addresses for the requested domain—we provide a list of these common system addresses in the next section of this post.

In this blog post, we share important details about this change and how you can prepare. Note that if you currently use DNS validation for your certificates requested from ACM, this change doesn’t affect you. These changes only apply to certificates that use email validation.

Background

When you request public certificates through ACM, you need to prove that you own or control the domain before ACM can issue the public certificate. ACM provides two options to validate ownership of a domain: DNS validation and email validation.

AWS recommends that you use DNS validation whenever possible so that ACM can automatically renew certificates that are requested from ACM without requiring action on your part. Email validation is another option that you can use to prove ownership of the domain, but you must manually validate ownership of the domain by using a link provided in an email. Figure 1 is a sample validation email from ACM for the AWS account 111122223333 and AWS US West (Oregon) Region (us-west-2) to validate ownership of the example.com domain.

Figure 1: Sample validation email for example.com domain

Figure 1: Sample validation email for example.com domain

How does ACM know where to send the validation email? Today, as part of the email validation process, ACM sends domain validation emails to the three contact addresses associated with the domain listed in the WHOIS database. These contact addresses are the domain registrant, technical contact, and administrative contact. You create and maintain domain registration information, including these contact addresses, outside of ACM—in the WHOIS database that your domain registrar provides.

Note: If you use Route53, see Updating contact information for a domain to update the contact information for your domain.

ACM also sends validation emails to the following five common system addresses for each domain: 

  • administrator@your_domain_name
  • hostmaster@your_domain_name
  • postmaster@your_domain_name
  • webmaster@your_domain_name
  • admin@your_domain_name

To prove that you own the domain, you must select the validation link included in these emails. ACM also sends validation emails to these same addresses to renew the certificate when the certificate is 45 days from expiry.

What’s changing?

If you currently use email validation for certificates requested from ACM, there are two important dates that you should be aware of:

  1. Starting June 2024, ACM will no longer send domain validation emails by using WHOIS lookup for new email-validated certificates that you request. ACM will continue to send validation emails to the three WHOIS lookup contact addresses for renewal of existing certificates, until October 2024.
  2. Starting October 2024, ACM will no longer send the validation emails to mailboxes associated with WHOIS lookup for existing certificates. After this date, ACM will not send validation emails to the three WHOIS lookup addresses for new or existing certificates.

ACM will continue to send validation emails to the five common system addresses that we listed in the previous section of this post.

Why are we making this change?

We’re making this change to mitigate a potential availability risk for ACM customers. A TLS certificate that ACM issues is valid for up to 395 days, and if you want to keep using it, you need to renew it prior to expiry. To renew an email-validated certificate, you must approve an email that ACM sends. ACM sends the first renewal email 45 days prior to certificate renewal, and if you don’t respond to this email, ACM sends additional reminders prior to expiry. If a certificate bound to one of your AWS resources—such as an Application Load Balancer—expires without being renewed, this could cause an outage for your application.

Some domain registrars that support WHOIS have made changes to the data that they publish to support their compliance with various privacy laws and recommended practices. Over the past several years, we’ve observed that the WHOIS lookup success rate has declined to less than 5 percent. If you rely on the contact addresses listed in the WHOIS database provided by your domain registrar to validate your domain ownership, this might create an availability risk. With a 5 percent success rate for WHOIS lookup, you might not receive validation emails for renewals of your certificates around 95 percent of the time. To provide a consistent mechanism for validating domain ownership when renewing certificates, ACM will only send validation emails to the five common system addresses that we listed in the Background section of this post.

What should you do to prepare?

If you currently monitor one of the five common system addresses (listed previously) for your domains, you don’t need to take any action. Otherwise, we strongly recommend that you create new DNS-validated certificates rather than creating and using email-validated certificates. ACM can automatically renew a DNS-validated certificate, without you taking any action, as long as the CNAME is accurately configured.

Alternatively, if you want to continue using email-validated certificates, we recommend that you monitor at least one of the five common email addresses listed previously. ACM sends the validation emails during certificate issuance for new ACM-issued certificates and during renewal of existing certificates. You can use the ACM describe-certificate API or check the certificate details on the ACM console to see if ACM previously sent validation emails to the relevant system addresses.

In addition, we strongly recommend that you use ACM Certificate Approaching Expiration events to monitor your certificates for expiry and help ensure that you’re notified about certificates that require an action from you to renew. For additional guidance, see How to manage certificate lifecycles using ACM event-driven workflows.

Conclusion

In this blog post, we outlined the changes coming to the email validation process when requesting and renewing certificates from ACM. We also shared the steps that you can take to prepare for this change, including monitoring at least one of the five relevant email addresses for your domains. Remember that these changes only apply to certificates that use email validation, not certificates that use DNS validation. For more information about certificate management on AWS, see the ACM documentation or get started using ACM today in the AWS Management Console.

If you have questions, contact AWS Support or your technical account manager (TAM), or start a new thread on the AWS re:Post ACM Forum. If you have feedback about this post, submit comments in the Comments section below.

 
Want more AWS Security news? Follow us on Twitter.

Lerna Ekmekcioglu

Lerna Ekmekcioglu

Lerna is a Senior Solutions Architect at AWS where she helps customers build secure, scalable, and highly available workloads. She has over 19 years of platform engineering experience including authentication systems, distributed caching, and multi-Region deployments using IaC and CI/CD to name a few. In her spare time, she enjoys hiking, sightseeing, and backyard astronomy.

Zach Miller

Zach Miller

Zach is a Senior Worldwide Security Specialist Solutions Architect at AWS. His background is in data protection and security architecture, focused on a variety of security domains, including cryptography, secrets management, and data classification. Today, he’s focused on helping enterprise AWS customers adopt and operationalize AWS security services to increase security effectiveness and reduce risk.

Georgy Sebastian

Georgy Sebastian

Georgy is a Senior Software Development Engineer at AWS Cryptography. He has a background in secure system architecture, PKI management, and key distribution. In his free time, he’s an amateur gardener and tinkerer.

Khyati Makim

Khyati Makim

Khyati is a Software Development Manager at AWS Cryptography where she’s focused on building secure solutions with cryptographic best practices. She has 25 years of experience building secure solutions in financial and retail businesses in distributed systems. In her spare time, she enjoys traveling, reading, painting, and spending time with family.

Faster AWS cloud connections with TLS 1.3

Post Syndicated from Kate Rodgers original https://aws.amazon.com/blogs/security/faster-aws-cloud-connections-with-tls-1-3/

At Amazon Web Services (AWS), we strive to continuously improve customer experience by delivering a cloud computing environment that supports the most modern security technologies. To improve the overall performance of your connections, we have already started to enable TLS version 1.3 globally across our AWS service API endpoints, and will complete this process by December 31, 2023. By using TLS 1.3, you can decrease your connection time by removing one network round trip for every connection request, and can benefit from some of the most modern and secure cryptographic cipher suites available today.

If you are using current software tools (2014 or later) including our AWS SDKs or AWS Command Line Interface (AWS CLI), you will automatically receive the benefits of TLS 1.3 with no action required on your part. This is because AWS services will negotiate the highest TLS protocol version that your client software supports. If you want to continue using TLS 1.2, you will still have full control through your client configurations. AWS will retain support for TLS 1.2, in addition to TLS 1.3, into the foreseeable future. Meanwhile, here’s the latest information on the on-going deprecation of TLS 1.0/1.1.

If you have any questions, start a new thread on AWS re:Post, or contact AWS Support or your technical account manager. If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Kate Rodgers

Kate Rodgers

Kate is a Senior Technical Program Manager in AWS Security with over 10 years of experience in industry as an engineer and program manager. Today she works with AWS services, infrastructure, and administrative teams to drive innovative solutions that improve the AWS security posture.

James McDuffie

James McDuffie

James is a Senior Technical Account Manager. He has over 20 years of experience in software development, with previous roles in Software and Hardware Security Architecture in Industrial IoT. He is an active member of the AWS Security community, and he works closely with our customers to help them solve complex security challenges at scale.

How to tune TLS for hybrid post-quantum cryptography with Kyber

Post Syndicated from Brian Jarvis original https://aws.amazon.com/blogs/security/how-to-tune-tls-for-hybrid-post-quantum-cryptography-with-kyber/

We are excited to offer hybrid post-quantum TLS with Kyber for AWS Key Management Service (AWS KMS) and AWS Certificate Manager (ACM). In this blog post, we share the performance characteristics of our hybrid post-quantum Kyber implementation, show you how to configure a Maven project to use it, and discuss how to prepare your connection settings for Kyber post-quantum cryptography (PQC).

After five years of intensive research and cryptanalysis among partners from academia, the cryptographic community, and the National Institute of Standards and Technology (NIST), NIST has selected Kyber for post-quantum key encapsulation mechanism (KEM) standardization. This marks the beginning of the next generation of public key encryption. In time, the classical key establishment algorithms we use today, like RSA and elliptic curve cryptography (ECC), will be replaced by quantum-secure alternatives. At AWS Cryptography, we’ve been researching and analyzing the candidate KEMs through each round of the NIST selection process. We began supporting Kyber in round 2 and continue that support today.

A cryptographically relevant quantum computer that is capable of breaking RSA and ECC does not yet exist. However, we are offering hybrid post-quantum TLS with Kyber today so that customers can see how the performance differences of PQC affect their workloads. We also believe that the use of PQC raises the already-high security bar for connecting to AWS KMS and ACM, making this feature attractive for customers with long-term confidentiality needs.

Performance of hybrid post-quantum TLS with Kyber

Hybrid post-quantum TLS incurs a latency and bandwidth overhead compared to classical crypto alone. To quantify this overhead, we measured how long S2N-TLS takes to negotiate hybrid post-quantum (ECDHE + Kyber) key establishment compared to ECDHE alone. We performed the tests with the Linux perf subsystem on an Amazon Elastic Compute Cloud (Amazon EC2) c6i.4xlarge instance in the US East (Northern Virginia) AWS Region, and we initiated 2,000 TLS connections to a test server running in the US West (Oregon) Region, to include typical internet latencies.

Figure 1 shows the latencies of a TLS handshake that uses classical ECDHE and hybrid post-quantum (ECDHE + Kyber) key establishment. The columns are separated to illustrate the CPU time spent by the client and server compared to the time spent sending data over the network.

Figure 1: Latency of classical compared to hybrid post-quantum TLS handshake

Figure 1: Latency of classical compared to hybrid post-quantum TLS handshake

Figure 2 shows the bytes sent and received during the TLS handshake, as measured by the client, for both classical ECDHE and hybrid post-quantum (ECDHE + Kyber) key establishment.

Figure 2: Bandwidth of classical compared to hybrid post-quantum TLS handshake

Figure 2: Bandwidth of classical compared to hybrid post-quantum TLS handshake

This data shows that the overhead for using hybrid post-quantum key establishment is 0.25 ms on the client, 0.23 ms on the server, and an additional 2,356 bytes on the wire. Intra-Region tests would result in lower network latency. Your latencies also might vary depending on network conditions, CPU performance, server load, and other variables.

The results show that the performance of Kyber is strong; the additional latency is one of the top contenders among the NIST PQC candidates that we analyzed in a previous blog post. In fact, the performance of these ciphers has improved during our latest test, because x86-64 assembly-optimized versions of these ciphers are now available for use.

Configure a Maven project for hybrid post-quantum TLS

In this section, we provide a Maven configuration and code example that will show you how to get started using our assembly-optimized, hybrid post-quantum TLS configuration with Kyber.

To configure a Maven project for hybrid post-quantum TLS

  1. Get the preview release of the AWS Common Runtime HTTP client for the AWS SDK for Java 2.x. Your Maven dependency configuration should specify version 2.17.69-PREVIEW or newer, as shown in the following code sample.
    <dependency>
        <groupId>software.amazon.awssdk</groupId>
        aws-crt-client
        <version>[2.17.69-PREVIEW,]</version>
    </dependency>

  2. Configure the desired cipher suite in your code’s initialization. The following code sample configures an AWS KMS client to use the latest hybrid post-quantum cipher suite.
    // Check platform support
    if(!TLS_CIPHER_PREF_PQ_TLSv1_0_2021_05.isSupported()){
        throw new RuntimeException(“Hybrid post-quantum cipher suites are not supported.”);
    }
    
    // Configure HTTP client   
    SdkAsyncHttpClient awsCrtHttpClient = AwsCrtAsyncHttpClient.builder()
              .tlsCipherPreference(TLS_CIPHER_PREF_PQ_TLSv1_0_2021_05)
              .build();
    
    // Create the AWS KMS async client
    KmsAsyncClient kmsAsync = KmsAsyncClient.builder()
             .httpClient(awsCrtHttpClient)
             .build();

With that, all calls made with your AWS KMS client will use hybrid post-quantum TLS. You can use the latest hybrid post-quantum cipher suite with ACM by following the preceding example but using an AcmAsyncClient instead.

Tune connection settings for hybrid post-quantum TLS

Although hybrid post-quantum TLS has some latency and bandwidth overhead on the initial handshake, that cost is amortized over the duration of the TLS session, and you can fine-tune your connection settings to help further reduce the cost. In this section, you learn three ways to reduce the impact of hybrid PQC on your TLS connections: connection pooling, connection timeouts, and TLS session resumption.

Connection pooling

Connection pools manage the number of active connections to a server. They allow a connection to be reused without closing and reopening it, which amortizes the cost of connection establishment over time. Part of a connection’s setup time is the TLS handshake, so you can use connection pools to help reduce the impact of an increase in handshake latency.

To illustrate this, we wrote a test application that generates approximately 200 transactions per second to a test server. We varied the maximum concurrency setting of the HTTP client and measured the latency of the test request. In the AWS CRT HTTP client, this is the maxConcurrency setting. If the connection pool doesn’t have an idle connection available, the request latency includes establishing a new connection. Using Wireshark, we captured the network traffic to observe the number of TLS handshakes that took place over the duration of the application. Figure 3 shows the request latency and number of TLS handshakes as the maxConcurrency setting is increased.

Figure 3: Median request latency and number of TLS handshakes as concurrency pool size increases

Figure 3: Median request latency and number of TLS handshakes as concurrency pool size increases

The biggest latency benefit occurred with a maxConcurrency value greater than 1. Beyond that, the latencies were past the point of diminishing returns. For all maxConcurrency values of 10 and below, additional TLS handshakes took place within the connections, but they didn’t have much impact on median latency. These inflection points will depend on your application’s request volume. The takeaway is that connection pooling allows connections to be reused, thereby spreading the cost of any increased TLS negotiation time over many requests.

More detail about using the maxConcurrency option can be found in the AWS SDK for Java API Reference.

Connection timeouts

Connection timeouts work in conjunction with connection pooling. Even if you use a connection pool, there is a limit to how long idle connections stay open before the pool closes them. You can adjust this time limit to save on connection establishment overhead.

A nice way to visualize this setting is to imagine bursty traffic patterns. Despite tuning the connection pool concurrency, your connections keep closing because the burst period is longer than the idle time limit. By increasing the maximum idle time, you can reuse these connections despite bursty behavior.

To simulate the impact of connection timeouts, we wrote a test application that starts 10 threads, each of which activate at the same time on a periodic schedule every 5 seconds for a minute. We set maxConcurrency to 10 to allow each thread to have its own connection. We set connectionMaxIdleTime of the AWS CRT HTTP client to 1 second for the first test; and to 10 seconds for the second test.

When the maximum idle time was 1 second, the connections for all 10 threads closed during the time between each burst. As a result, 100 total connections were formed over the life of the test, causing a median request latency of 20.3 ms. When we changed the maximum idle time to 10 seconds, the 10 initial connections were reused by each subsequent burst, reducing the median request latency to 5.9 ms.

By setting the connectionMaxIdleTime appropriately for your application, you can reduce connection establishment overhead, including TLS negotiation time, to help achieve time savings throughout the life of your application.

More detail about using the connectionMaxIdleTime option can be found in the AWS SDK for Java API Reference.

TLS session resumption

TLS session resumption allows a client and server to bypass the key agreement that is normally performed to arrive at a new shared secret. Instead, communication quickly resumes by using a shared secret that was previously negotiated, or one that was derived from a previous secret (the implementation details depend on the version of TLS in use). This feature requires that both the client and server support it, but if available, TLS session resumption allows the TLS handshake time and bandwidth increases associated with hybrid PQ to be amortized over the life of multiple connections.

Conclusion

As you learned in this post, hybrid post-quantum TLS with Kyber is available for AWS KMS and ACM. This new cipher suite raises the security bar and allows you to prepare your workloads for post-quantum cryptography. Hybrid key agreement has some additional overhead compared to classical ECDHE, but you can mitigate these increases by tuning your connection settings, including connection pooling, connection timeouts, and TLS session resumption. Begin using hybrid key agreement today with AWS KMS and ACM.

 
If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Brian Jarvis

Brian Jarvis

Brian is a Senior Software Engineer at AWS Cryptography. His interests are in post-quantum cryptography and cryptographic hardware. Previously, Brian worked in AWS Security, developing internal services used throughout the company. Brian holds a Bachelor’s degree from Vanderbilt University and a Master’s degree from George Mason University in Computer Engineering. He plans to finish his PhD “some day”.

TLS 1.2 to become the minimum TLS protocol level for all AWS API endpoints

Post Syndicated from Janelle Hopper original https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/

At Amazon Web Services (AWS), we continuously innovate to deliver you a cloud computing environment that works to help meet the requirements of the most security-sensitive organizations. To respond to evolving technology and regulatory standards for Transport Layer Security (TLS), we will be updating the TLS configuration for all AWS service API endpoints to a minimum of version TLS 1.2. This update means you will no longer be able to use TLS versions 1.0 and 1.1 with all AWS APIs in all AWS Regions by June 28, 2023. In this post, we will tell you how to check your TLS version, and what to do to prepare.

We have continued AWS support for TLS versions 1.0 and 1.1 to maintain backward compatibility for customers that have older or difficult to update clients, such as embedded devices. Furthermore, we have active mitigations in place that help protect your data for the issues identified in these older versions. Now is the right time to retire TLS 1.0 and 1.1, because increasing numbers of customers have requested this change to help simplify part of their regulatory compliance, and there are fewer and fewer customers using these older versions.

If you are one of the more than 95% of AWS customers who are already using TLS 1.2 or later, you will not be impacted by this change. You are almost certainly already using TLS 1.2 or later if your client software application was built after 2014 using an AWS Software Development Kit (AWS SDK), AWS Command Line Interface (AWS CLI), Java Development Kit (JDK) 8 or later, or another modern development environment. If you are using earlier application versions, or have not updated your development environment since before 2014, you will likely need to update.

If you are one of the customers still using TLS 1.0 or 1.1, then you must update your client software to use TLS 1.2 or later to maintain your ability to connect. It is important to understand that you already have control over the TLS version used when connecting. When connecting to AWS API endpoints, your client software negotiates its preferred TLS version, and AWS uses the highest mutually agreed upon version.

To minimize the availability impact of requiring TLS 1.2, AWS is rolling out the changes on an endpoint-by-endpoint basis over the next year, starting now and ending in June 2023. Before making these potentially breaking changes, we monitor for connections that are still using TLS 1.0 or TLS 1.1. If you are one of the AWS customers who may be impacted, we will notify you on your AWS Health Dashboard, and by email. After June 28, 2023, AWS will update our API endpoint configuration to remove TLS 1.0 and TLS 1.1, even if you still have connections using these versions.

What should you do to prepare for this update?

To minimize your risk, you can self-identify if you have any connections using TLS 1.0 or 1.1. If you find any connections using TLS 1.0 or 1.1, you should update your client software to use TLS 1.2 or later.

AWS CloudTrail records are especially useful to identify if you are using the outdated TLS versions. You can now search for the TLS version used for your connections by using the recently added tlsDetails field. The tlsDetails structure in each CloudTrail record contains the TLS version, cipher suite, and the fully qualified domain name (FQDN, also known as the URL) field used for the API call. You can then use the data in the records to help you pinpoint your client software that is responsible for the TLS 1.0 or 1.1 call, and update it accordingly. Nearly half of AWS services currently provide the TLS information in the CloudTrail tlsDetails field, and we are continuing to roll this out for the remaining services in the coming months.

We recommend you use one of the following options for running your CloudTrail TLS queries:

  1. AWS CloudTrail Lake: You can follow the steps, and use the sample TLS query, in the blog post Using AWS CloudTrail Lake to identify older TLS connections. There is also a built-in sample CloudTrail TLS query available in the AWS CloudTrail Lake console.
  2. Amazon CloudWatch Log Insights: There are two built-in CloudWatch Log Insights sample CloudTrail TLS queries that you can use, as shown in Figure 1.
     
    Figure 1: Available sample TLS queries for CloudWatch Log Insights

    Figure 1: Available sample TLS queries for CloudWatch Log Insights

  3. Amazon Athena: You can query AWS CloudTrail logs in Amazon Athena, and we will be adding support for querying the TLS values in your CloudTrail logs in the coming months. Look for updates and announcements about this in future AWS Security Blog posts.

In addition to using CloudTrail data, you can also identify the TLS version used by your connections by performing code, network, or log analysis as described in the blog post TLS 1.2 will be required for all AWS FIPS endpoints. Note that while this post refers to the FIPS API endpoints, the information about querying for TLS versions is applicable to all API endpoints.

Will I be notified if I am using TLS 1.0 or TLS 1.1?

If we detect that you are using TLS 1.0 or 1.1, you will be notified on your AWS Health Dashboard, and you will receive email notifications. However, you will not receive a notification for connections you make anonymously to AWS shared resources, such as a public Amazon Simple Storage Service (Amazon S3) bucket, because we cannot identify anonymous connections. Furthermore, while we will make every effort to identify and notify every customer, there is a possibility that we may not detect infrequent connections, such as those that occur less than monthly.

How do I update my client to use TLS 1.2 or TLS 1.3?

If you are using an AWS Software Developer Kit (AWS SDK) or the AWS Command Line Interface (AWS CLI), follow the detailed guidance about how to examine your client software code and properly configure the TLS version used in the blog post TLS 1.2 to become the minimum for FIPS endpoints.

We encourage you to be proactive in order to avoid an impact to availability. Also, we recommend that you test configuration changes in a staging environment before you introduce them into production workloads.

What is the most common use of TLS 1.0 or TLS 1.1?

The most common use of TLS 1.0 or 1.1 are .NET Framework versions earlier than 4.6.2. If you use the .NET Framework, please confirm you are using version 4.6.2 or later. For information about how to update and configure the .NET Framework to support TLS 1.2, see How to enable TLS 1.2 on clients in the .NET Configuration Manager documentation.

What is Transport Layer Security (TLS)?

Transport Layer Security (TLS) is a cryptographic protocol that secures internet communications. Your client software can be set to use TLS version 1.0, 1.1, 1.2, or 1.3, or a subset of these, when connecting to service endpoints. You should ensure that your client software supports TLS 1.2 or later.

Is there more assistance available to help verify or update my client software?

If you have any questions or issues, you can start a new thread on the AWS re:Post community, or you can contact AWS Support or your Technical Account Manager (TAM).

Additionally, you can use AWS IQ to find, securely collaborate with, and pay AWS certified third-party experts for on-demand assistance to update your TLS client components. To find out how to submit a request, get responses from experts, and choose the expert with the right skills and experience, see the AWS IQ page. Sign in to the AWS Management Console and select Get Started with AWS IQ to start a request.

What if I can’t update my client software?

If you are unable to update to use TLS 1.2 or TLS 1.3, contact AWS Support or your Technical Account Manager (TAM) so that we can work with you to identify the best solution.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Janelle Hopper

Janelle is a Senior Technical Program Manager in AWS Security with over 25 years of experience in the IT security field. She works with AWS services, infrastructure, and administrative teams to identify and drive innovative solutions that improve the AWS security posture.

Author

Daniel Salzedo

Daniel is a Senior Specialist Technical Account Manager – Security. He has over 25 years of professional experience in IT in industries as diverse as video game development, manufacturing, banking, and used car sales. He loves working with our wonderful AWS customers to help them solve their complex security challenges at scale.

Author

Ben Sherman

Ben is a Software Development Engineer in AWS Security, where he focuses on automation to support AWS compliance obligations. He enjoys experimenting with computing and web services both at work and in his free time.

TLS 1.2 will be required for all AWS FIPS endpoints beginning March 31, 2021

Post Syndicated from Janelle Hopper original https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-fips-endpoints/

To help you meet your compliance needs, we’re updating all AWS Federal Information Processing Standard (FIPS) endpoints to a minimum of Transport Layer Security (TLS) 1.2. We have already updated over 40 services to require TLS 1.2, removing support for TLS 1.0 and TLS 1.1. Beginning March 31, 2021, if your client application cannot support TLS 1.2, it will result in connection failures. In order to avoid an interruption in service, we encourage you to act now to ensure that you connect to AWS FIPS endpoints at TLS version 1.2. This change does not affect non-FIPS AWS endpoints.

Amazon Web Services (AWS) continues to notify impacted customers directly via their Personal Health Dashboard and email. However, if you’re connecting anonymously to AWS shared resources, such as through a public Amazon Simple Storage Service (Amazon S3) bucket, then you would not have received a notification, as we cannot identify anonymous connections.

Why are you removing TLS 1.0 and TLS 1.1 support from FIPS endpoints?

At AWS, we’re continually expanding the scope of our compliance programs to meet the needs of customers who want to use our services for sensitive and regulated workloads. Compliance programs, including FedRAMP, require a minimum level of TLS 1.2. To help you meet compliance requirements, we’re updating all AWS FIPS endpoints to a minimum of TLS version 1.2 across all AWS Regions. Following this update, you will not be able to use TLS 1.0 and TLS 1.1 for connections to FIPS endpoints.

How can I detect if I am using TLS 1.0 or TLS 1.1?

To detect the use of TLS 1.0 or 1.1, we recommend that you perform code, network, or log analysis. If you are using an AWS Software Developer Kit (AWS SDK) or Command Line Interface (CLI), we have provided hyperlinks to detailed guidance in our previous TLS blog post about how to examine your client application code and properly configure the TLS version used.

When the application source code is unavailable, you can use a network tool, such as TCPDump (Linux) or Wireshark (Linux or Windows), to analyze your network traffic to find the TLS versions you’re using when connecting to AWS endpoints. For a detailed example of using these tools, see the example, below.

If you’re using Amazon S3, you can also use your access logs to view the TLS connection information for these services and identify client connections that are not at TLS 1.2.

What is the most common use of TLS 1.0 or TLS 1.1?

The most common client applications that use TLS 1.0 or 1.1 are Microsoft .NET Framework versions earlier than 4.6.2. If you use the .NET Framework, please confirm you are using version 4.6.2 or later. For information on how to update and configure .NET Framework to support TLS 1.2, see How to enable TLS 1.2 on clients.

How do I know if I am using an AWS FIPS endpoint?

All AWS services offer TLS 1.2 encrypted endpoints that you can use for all API calls. Some AWS services also offer FIPS 140-2 endpoints for customers who need to use FIPS-validated cryptographic libraries to connect to AWS services. You can check our list of all AWS FIPS endpoints and compare the list to your application code, configuration repositories, DNS logs, or other network logs.

EXAMPLE: TLS version detection using a packet capture

To capture the packets, multiple online sources, such as this article, provide guidance for setting up TCPDump on a Linux operating system. On a Windows operating system, the Wireshark tool provides packet analysis capabilities and can be used to analyze packets captured with TCPDump or it can also directly capture packets.

In this example, we assume there is a client application with the local IP address 10.25.35.243 that is making API calls to the CloudWatch FIPS API endpoint in the AWS GovCloud (US-West) Region. To analyze the traffic, first we look up the endpoint URL in the AWS FIPS endpoint list. In our example, the endpoint URL is monitoring.us-gov-west-1.amazonaws.com. Then we use NSLookup to find the IP addresses used by this FIPS endpoint.

Figure 1: Use NSLookup to find the IP addresses used by this FIPS endpoint

Figure 1: Use NSLookup to find the IP addresses used by this FIPS endpoint

Wireshark is then used to open the captured packets, and filter to just the packets with the relevant IP address. This can be done automatically by selecting one of the packets in the upper section, and then right-clicking to use the Conversation filter/IPv4 option.

After the results are filtered to only the relevant IP addresses, the next step is to find the packet whose description in the Info column is Client Hello. In the lower packet details area, expand the Transport Layer Security section to find the version, which in this example is set to TLS 1.0 (0x0301). This indicates that the client only supports TLS 1.0 and must be modified to support a TLS 1.2 connection.

Figure 2: After the conversation filter has been applied, select the Client Hello packet in the top pane. Expand the Transport Layer Security section in the lower pane to view the packet details and the TLS version.

Figure 2: After the conversation filter has been applied, select the Client Hello packet in the top pane. Expand the Transport Layer Security section in the lower pane to view the packet details and the TLS version.

Figure 3 shows what it looks like after the client has been updated to support TLS 1.2. This second packet capture confirms we are sending TLS 1.2 (0x0303) in the Client Hello packet.

Figure 3: The client TLS has been updated to support TLS 1.2

Figure 3: The client TLS has been updated to support TLS 1.2

Is there more assistance available?

If you have any questions or issues, you can start a new thread on one of the AWS forums, or contact AWS Support or your technical account manager (TAM). The AWS support tiers cover development and production issues for AWS products and services, along with other key stack components. AWS Support doesn’t include code development for client applications.

Additionally, you can use AWS IQ to find, securely collaborate with, and pay AWS-certified third-party experts for on-demand assistance to update your TLS client components. Visit the AWS IQ page for information about how to submit a request, get responses from experts, and choose the expert with the right skills and experience. Log in to your console and select Get Started with AWS IQ to start a request.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Janelle Hopper

Janelle is a Senior Technical Program Manager in AWS Security with over 15 years of experience in the IT security field. She works with AWS services, infrastructure, and administrative teams to identify and drive innovative solutions that improve AWS’ security posture.

Author

Daniel Salzedo

Daniel is a Senior Specialist Technical Account Manager – Security. He has over 25 years of professional experience in IT in industries as diverse as video game development, manufacturing, banking and used car sales. He loves working with our wonderful AWS customers to help them solve their complex security challenges at scale.

Over 40 services require TLS 1.2 minimum for AWS FIPS endpoints

Post Syndicated from Janelle Hopper original https://aws.amazon.com/blogs/security/over-40-services-require-tls-1-2-minimum-for-aws-fips-endpoints/

In a March 2020 blog post, we told you about work Amazon Web Services (AWS) was undertaking to update all of our AWS Federal Information Processing Standard (FIPS) endpoints to a minimum of Transport Layer Security (TLS) 1.2 across all AWS Regions. Today, we’re happy to announce that over 40 services have been updated and now require TLS 1.2:

These services no longer support using TLS 1.0 or TLS 1.1 on their FIPS endpoints. To help you meet your compliance needs, we are updating all AWS FIPS endpoints to a minimum of TLS 1.2 across all Regions. We will continue to update our services to support only TLS 1.2 or later on AWS FIPS endpoints, which you can check on the AWS FIPS webpage. This change doesn’t affect non-FIPS AWS endpoints.

When you make a connection from your client application to an AWS service endpoint, the client provides its TLS minimum and TLS maximum versions. The AWS service endpoint will always select the maximum version offered.

What is TLS?

TLS is a cryptographic protocol designed to provide secure communication across a computer network. API calls to AWS services are secured using TLS.

What is FIPS 140-2?

The FIPS 140-2 is a US and Canadian government standard that specifies the security requirements for cryptographic modules that protect sensitive information.

What are AWS FIPS endpoints?

All AWS services offer TLS 1.2 encrypted endpoints that can be used for all API calls. Some AWS services also offer FIPS 140-2 endpoints for customers who need to use FIPS validated cryptographic libraries to connect to AWS services.

Why are we upgrading to TLS 1.2?

Our upgrade to TLS 1.2 across all Regions reflects our ongoing commitment to help customers meet their compliance needs.

Is there more assistance available to help verify or update client applications?

If you’re using an AWS software development kit (AWS SDK), you can find information about how to properly configure the minimum and maximum TLS versions for your clients in the following AWS SDK topics:

You can also visit Tools to Build on AWS and browse by programming language to find the relevant SDK. AWS Support tiers cover development and production issues for AWS products and services, along with other key stack components. AWS Support doesn’t include code development for client applications.

If you have any questions or issues, you can start a new thread on one of the AWS forums, or contact AWS Support or your technical account manager (TAM).

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Janelle Hopper

Janelle Hopper is a Senior Technical Program Manager in AWS Security with over 15 years of experience in the IT security field. She works with AWS services, infrastructure, and administrative teams to identify and drive innovative solutions that improve AWS’ security posture.

Author

Marta Taggart

Marta is a Seattle-native and Senior Program Manager in AWS Security, where she focuses on privacy, content development, and educational programs. Her interest in education stems from two years she spent in the education sector while serving in the Peace Corps in Romania. In her free time, she’s on a global hunt for the perfect cup of coffee.